fanuc 0 SERIES CONTROLLER

เริ่มโดย admin, มีนาคม 01, 2013, 07:44:56 PM

« หน้าที่แล้ว - ต่อไป »

admin


0 SERIES CONTROLLER


Note: The memory back-up consists of three alkaline R20 "D" cells.

If com port is port 1, M5 is used. If com port is port 2, M74 is used.
To determine if com port is Port 1 or Port 2, trace the RS-232 cable from the serial port connector back to the CNC master PCB on 0-B controller or memory PCB on 0-controller and see if it is connected to M5 or M74.

Parameters associated with Port 1 are Param.2, 38, 522
Parameters associated with Port 2 are Param.50, 38, 253

If the Absolute Position display goes to some number other than 0.0000 when a reference return is made, check Parameter 10.7. If this only occurs on one axis, check the work coordinates (G54, G55, etc.) for the value that appears in the Absolute display.

You can set Parameter 397.7 to 1 to tell the controller to display the Spindle Amplifier alarm number on the CRT.

*** NOTE ***
It is very important that when changing parameters in order to facilitate communications that only those bits needing to be changed are changed. Never change a parameter that does not absolutely have to be. Especially where number 0038 is concerned. If parameter 0038 is originally 10000011, for example, you would change it to 11000011 and nothing else. ALWAYS record a parameter somewhere before making any change.

For serial communications on Port 1 settings are:
TVON =      0         Parameter    0002   1xxxxxx1
ISO =         1                               0038   01xxxxxx
I/O =           0                              0050    Not used
PWE=        1                               0552   10
TAPEF=     0                               0553    Not used


For serial communications on Port 2 settings are:
TVON =     0        Parameter      0002   Not used
ISO =         1                               0038   xx01xxxx
I/O =           2                              0050   1xxxxxx1
PWE=        1                               0552   Not used
TAPEF=     0                               0553   10

x - Does not matter how these bits are set.

Fanuc default protocol is 4800, E, 7, 2

TVON tells the controller whether or not to make a TV (Tape Vertical Parity) check when a program is registered in memory. 1 = Make check  0 = No check When set to 1, the controller will generate Alarm P/S 002 if one block (From one EOB to the next EOB) contains an odd number of characters. Parameter 18.6 determines whether or not a TV check is made on program comments.

TAPEF specifies the type of tape format. 1 = F10/F11 format after conversion. 0 = FSO standard format without conversion.


To receive programs or parameters in ASCII set:

I/O = 0
ISO = 1
Parameter 0002.0 = 1
Another Parameter associated with this is 51 bit3.

I/O can be set for 0, 1, 2 or 3. Changing this number provides Device information to the controller. This is similar to the Device settings on a Mitsubishi controller. Setting I/O for 0 tells the controller to set the device according to Parameter 38 bits 6 and 7. It also tells the control to set the Feed, Interface and Stop Bits according to Parameter 2 bits 7, 2 and 0 respectively. Lastly, it tells the controller to set the Baud Rate according to Parameter 552.

I/O set for 1 tells the controller to use Parameter 38 bits 6 and 7, Parameter 12 bits 7, 2 and 0. These correspond to the same bits on Parameter 2. I/O also tells the controller to set the Baud Rate according to Parameter 553.

I/O set for 2 tells the controller to use Port 2. (M74 on Memory board) Again, assuming RS232 as with I/O = 0 and I/O = 1, I/O set for 2 tells the controller to use Parameter 38 bits 4 and 5. The Feed Rate and Stop Bit settings will be according to Parameter 50 bits 7 and 0 respectively. The Baud Rate will be set according to Parameter 250.

I/O = 3 is for communicating via Port 3 and is almost never used. If for some reason it were used, the associated Parameters would be Parameter 38 bits 1 and 2, Parameter 51 bits 7 and 0, and Baud Rate Parameter 251. Parameter 38 bits 6 and 7 should be set for 0 and 1 respectively for RS232.

Normally a machine will come with I/O set for 0. Sometimes a situation may arise where you have a hardware problem which causes the 086 alarm. Many machines will come with Parameter 12 set for communication through a 4-20 milliamp interface instead of RS232. In this case if you change I/O to 1 the controller will use Parameter 12 settings rather than Parameter 2. If Parameter 12 is set for the 4-20 interface it will not look for the signals it usually looks for at the RS232 port so the 086 alarm will not be issued. Oddly enough, this set of conditions normally allow RS232 communication from the NC to the PC but not the other way. Although Alarm 086 almost always occurs due to a hardware problem, it is possible to generate it through operation error.

If the Memory Board does have a hardware problem preventing it from being able to communicate, it is probably either a Line Driver or Line Receiver IC. If the controller will receive but not send, there may be a bad Line Driver. If the reverse is true then there is likely a bad Line Receiver.

IC Specifications:
Driver - 75188
Receiver - 75189

These ICs are available from NTE. Their NTE designation is NTE75188 and
NTE75189. Both are described as an IC-DTL Quad Line Driver 14 Pin DIP.


The value of Parameter 552 for the following Baud rates
9600     11
4800     10
2400      9
1200      8
600        7
300        6
200        5
150        4
110        3
100        2
50          1

Changing parameters:

1.  Go to MDI mode
2.  Turn the Program Protect key off.
3.  Press PARAM key
4.  Press page down key
5.  Cursor to PWE=0
6.  Enter a 1
7.  Press INPUT key
     ( Ignore alarm or press RESET and CAN simultaneously to clear. )
8.  Press PARAM key
9.  Press page down key
10. Cursor to desired parameter
11. Enter the desired value (i.e. 10001001)
12. Press the INPUT key

At this point the parameter has been changed and you should reset PWE to 0.

Changing Diagnostics:
Not all diagnostics can be changed but to change those that can be the procedure is the same as for changing parameters except that upon reaching step 8, the PARAM key should be pressed twice.

Note: To reach Parameters and Diagnostics more quickly than using the Cursor key, press the No. key and when prompted enter the desired Parameter or Diagnostic followed by the INPUT key. The cursor will advance to the this address.

If you have trouble communicating check to see if Parameter 2 Bit 2 is one or zero.

To send one from the controller:
1. Prepare the PC to receive the program.
2. Switch EDIT mode.
3. Press the PRGRM key.
4. Select the LIB soft key.
5. Key in the desired program beginning with an O.( i.e. O0025 )
6. Press the OUTPUT START key.
    ( OUTPUT should begin flashing in the lower right hand corner.)



The procedure for reloading parameters with a PC using Procomm is:

1.  Switch to MDI mode.
2.  Engage the Emergency Stop.
3.  Press the PARAM key.
4.  Press the Page Down key.
5.  Cursor to PWE.
6.  Press 1.
7.  Press the INPUT key.
8.  Cursor to TVON.
9.  Press 0.
10. Press the INPUT key.
11. Cursor to ISO.
12. Press 1.
13. Press the INPUT key.
14. Press the Page Down key until you reach the parameter number 900.
15. Using the paper copy of parameters enter all of the 900 series parameters.
16. Page back to parameter number 212 and set according to paper copy.
17. Set parameters 2,38,50,552,and 553 according to corresponding port.
18. Connect the serial cable.
19. Press PARAM key.
20. Press [PARAM] soft key.
21. Press the INPUT key.(LSK should flash in the lower right corner.
22. Start Procomm.
23. Press the PC Page Up key.
24. Press number 7 key. (For ASCII)
25. Type in the filename that contains the CNC parameters and press Enter.
       (The CNC should flash INPUT in the lower right corner)
       (The PC should display the text and count lines until finished)
26. Power the controller down and back up for the parameters to take effect.

Another problem may be with Over Travel Alarms. These will occur if the Stroke Limit Parameters are lost. The Stroke Limits are stored in Parameters 700 to 707. These alarms are normally superseded by the position deviation alarms. On an M controller the stroke limit parameters are:

700  First Stored Stroke Limit X Axis
701     "         "           "        "    Y    "
702     "         "           "        "    Z    "
703     "         "           "        "    4    "
704  Second Stored Stroke Limit X Axis
705     "         "           "             "    Y    "
706     "         "           "             "    Z    "
707     "         "           "             "    4    "

On a T control they are:

700  First Stored Stroke Limit X Axis
701     "         "           "        "    Z    "
702     "         "           "        "    3    "
703     "         "           "        "    4    "
704  Second Stored Stroke Limit X Axis
705     "         "           "             "    Z    "
706     "         "           "             "    3    "
707     "         "           "             "    4    "

The Setting Range is 9999999 to -9999999. 700 to 703 will be set to a positive number. 704 to 707 will be set to a negative number. Set to 9999999 or -9999999 to open up stroke limits all the way. Most of the Pitch Error Compensation information is stored in Parameters in the 1000, 2000, and 3000 series and also in the 6000 series and must be re-entered after memory loss.

Also Diagnostics 300-699 (PMC Parameters) must be reloaded. The parameter for Backlash compensation is 535 for X, 536 for Y, and 537 for Z.

The red LED on the NC Power Supply indicates an alarm condition. It can mean either the power supply has an internal fault or an external output is shorted or grounded. To determine which it is disconnect all of the cables except CP1 which is the 200vac supply. Remove the power supply from the main board. Turn the power on. If the red LED still comes on the power supply is bad. If it stays off, there is a fault somewhere in the external circuit. The fault will normally be found in the machine wiring but quite often will be a defective I/O card.

On a 0 Control CP3 on the power supply goes to the NC power On/Off switches. CP15 supplies the 24vdc to the external machine I/O.

Parameter 24.0 = 0 tells the controller to ignore the ladder relative to PMC axis control.

Stroke limits are stored in Parameters 700 thru 707.
700 - X+
701 - Y+
702 - Z+
703 - 4+
704 - X-
705 - Y-
706 - Z-
707 - 4-
To open the limits all the way up enter 99999999 in the + parameter and -99999999 in the - parameter. If the command is being sent but the axis still will not move check the diagnostic 8. This is the axis interlock. In the case of a T controller bit 8.2 is X+

8.3 is X-
8.4 is Z+
8.5 is Z-

These bits are machine interlock signals. They are normally called +MIT1, -MIT1, +MIT2, -MIT2. This example is for a lathe so only two axes are shown. They are normally used only on a lathe and in most cases are tied to the Tool Setter probes, particularly on an Ecoca. If one of them is made the axis corresponding to it will not move in the direction which corresponds. No alarms are associated with these. They are Active Low inputs, so if the corresponding Diagnostic bit will be a 1 if the switch is open. In the case of the Ecoca, the 24 volt ground (DCN) is fed through the switch to the I/O board.

To view the Operating Monitor Screen,:
1. Press the OPR ALARM button.
2. Press the POS button.
3. Press the > (Scroll Right) button.
4. Press the MONI button.

Among the other information displayed here is the Axes load, the Spindle load and the Spindle speed. If you page through the screens you can get to the Software Operators Panel which allows you to use the arrow left and right keys to perform functions normally handled by the MTB switches and buttons. For example, Mode Select, Feed rate Override, Dry Run, etc.



The Spindle Orientation Parameter is 6531. The setting value is 0 to 4096. The amount entered depends on the number of degrees you want the spindle to turn. 4096/360 = .088, so if you are trying to adjust the orient position, increasing the value of the parameter by 1 will cause the spindle to stop .088 degrees further than before. If you want to change the orient position by 1 degree at a time, you would have to add or subtract 11.36 which cannot be entered into the parameter so you would use 11.

Depending on the MTB you may need to adjust Parameter 6577. Which parameter you adjust is determined by whether the machine uses the spindle motor encoder to orient or a Fanuc Position Coder or a magnetic pick up.

Parameter 19.3 sets the Tool Compensation System A or B/C. Most of the time it should be set to 0. On most machines if B/C system is selected the Z axis will, in Auto Mode, respond to G28 Z0 by going home then moving down the amount of the offset value of the tool in the spindle.

On a Model A Controller, the procedure for displaying the Program Library is:

1.Select EDIT Mode.
2.Press the "P" button until "P" is displayed.
3.With "P" flashing, press the Input button.

0-C Servo Alarms as Displayed on Servo Amplifier:

8, 9, A, b, C, d, e

Any of these in the LED display indicates an abnormal current alarm. Check the following parameters first:

8n04
8n06
8n10
8n40
8n41
8n74
8n98

IF THE PARAMETERS ARE SET CORRECTLY:

1. Place the machine in E-Stop.
2. Remove the motor leads from the amplifier.
3. Release the E-Stop.

IF AN ABNORMAL CURRENT ALARM OCCURS IMMEDIATELY:
Check for noise on the actual current waveform at IR and IS. If there is noise on the waveform check shielding and grounding. If the shielding and grounding are correct, there is probably a defective command cable or hardware defect in the CNC. If there is no noise on the waveform, the amplifier is probably defective.

IF AN ALARM OCCURS WHILE RUNNING THE MOTOR:
Check the motor and motor leads for shorting or grounding. If the motor and wiring is good, measure the actual current at IR and IS.

The procedure for reloading a "Brain Dead" 0 Control when you have a copy of the Parameters on Disk or PC is:

1.   Set the E-Stop ON. (Button in)
2.   Select MDI mode.
3.   Set PWE = 1
4.   Set Parameter 901 to the correct value.
5.   Press the DELETE key when prompted to by the controller. (You must delete the files in order to continue)
6.   Cycle power.
7.   Set Parameter 38 to the correct value.
8.   Make sure EIA/ISO = 1.
9.   Make sure I/O = 0.
10. Cycle power.
11. Set the PC's protocol for 4800,E,7,2. (When parameters are lost, the controller defaults to this protocol)
12. Select EDIT mode.
13. With E-Stop in and Parameter Page selected, press EOB and INPUT together. (LSK will start to flash)
14. Send the Parameters from the PC. (When the data begins to flow, LSK will change to INPUT and flash)
15. When INPUT disappears, cycle power.
16. Select Diagnostics Page.
17. Release the E-Stop.
18. Press INPUT only.(LSK will flash)
19. Go to the PC and send the Diagnostics. (When data begins to flow, LSK change to INPUT and begin to flash)
20. When INPUT disappears, cycle power.
21. Set Keep Relays as required by the Machine Tool Builder.
22. Cycle power.

Remember that when working with a brain dead controller that the CRT may display EDIT mode regardless of what mode is actually selected so go ahead and put the machine in MDI mode and enter the necessary parameters.

If Alarm 085 is continually issued, double check the PC's protocol and check Parameters 2, 10, 38, and 552 to make sure the controller defaulted to 4800,E, 7,2.

When viewing the Diagnostics on a PC, N10300 = D0300 and so forth.

The timers are in milliseconds so a value of 1000 in a timer diagnostic equals one second. As an example, D320 and D325 are often used for a machines lube timer. D320 will be used for the time on while D325 will be for the time off. If D320 is set for 10000 and D325 is set for 1200000, the lube pump will turn on for ten seconds every twenty minutes.

When a dwell is executed, the X Axis Distance To Go display counts down the time left.

The parameters you need to calibrate the tool setter are 743- 746.

8., 9., A., b., C., d., E. 
These are IPM alarms. Place the machine in E-Stop Wait about ten minutes. Release the E-Stop. If the cause of the alarm was IPM overheat, the alarm will not re-occur unless the ambient temperature is too high or the operating conditions are such as to cause a re-occurrence. If the alarm does recur as soon as the E-Stop is released, check for noise on the actual current waveform. If there is noise, check the shielding and grounding. If the shielding and grounding are good, there may be a defective cable or defect in the CNC. If there is no noise, the amplifier may be defective. If the alarm occurs while running the motor, check same as for over current alarms.

If you have a problem with the NC putting two rectangular characters in front of each block of data when uploading a program, try changing Parameter 70.7.


To access the Servo Monitor page:
1. Press PARAM/DGNOS button.
2. Press SV-PRM soft key.
3. Press Page Down button until you see the axis.

To find out the software information power up the NC in E-Stop mode. After a few seconds, it will be displayed. 

Parameter 28.2 determines if the actual feed rate is displayed or not. If it equals 0, it is not displayed on the Position page or on the Program Check screen.

Parameter 14.2 works the same way for actual spindle speed and the current tool display.

If an axis continually over travels even after using P+CAN, try changing the soft limit parameter for the required direction of the axis to all nines. Keep in mind that the second and even third stored stroke limits may be set. If they are you must open them up as well.

The number of parts machined are stored in Parameter 779. This number as well as other parameters are stored in volatile memory and as such can be accidentally or purposely wiped out. If this happens, variable 3002 will be reset and you will not know how many Run Hours are on the machine.

The value in variable 3002 is in decimal form. Everything to the left of the decimal point is in one hour increments. Everything to the right is some fraction of an hour.

Variable 3901 stores the number of parts machined.

To display the value of Timers and Counters in Decimal instead of Binary Parameter 19.7 equal 1. If you change this bit you will have to cycle power (Alarm 000).

If you have several machine alarms along with Alarm 401, check for a loose I/O board. Sometimes Alarm 401 will be issued if the MCC contactor drops out and pulls back in quickly. This can be caused by any of the usual things that cause MCC to drop out (Door switch, E-Stop, Over travel switch, etc.). In this case an alarm condition may or may not be issued of the amplifier LED display. Also, in this case, the 401 alarm can be removed by pressing the Reset button.

Alarm 401 can be caused by a defective power supply module (PSM). This is a likely cause when there are no other alarms displayed. Normally in this case the CRT will also display NOT READY ALARM at the bottom of the screen but the MCC contactor will be pulled in. Also, the PSM and the Servo Amplifier will display the usual dashed lines as they do whenever the drive is in a NOT READY state. If the Reset button is continually pressed the alarm will go away but the drive will not become ready (0 will not be displayed). The indication that this will typically give is that everything is OK with the machine side and the drives but the CNC just does not realize it. Servo tuning on:

1. DGNOS/PARAM button.
2. SV-PRM soft key.

Servo screens:
(Using Ecoca SJ-35MC with main spindle as C axis as an example)

SERVO SETTING

                                              X AXIS           Z AXIS

INITIAL SET BITS           00000010         00000010
MOTOR ID NO.                           18                     20
AMR                                 00000000         00000000
CMR                                               1                       2
FEEDGEAR N                                1                       1
(N/M)    M                                    125                   100
DIRECTION SET                         111                  -111
VELOCITY PULSE NO.            8192                 8192
POSITION PULSE NO.           12500               12500
REF. COUNTER                       8000                  8000


                                             C AXIS

INITIAL SET BITS            00000000
MOTOR ID NO.                              0
AMR                                 00000000
CMR                                               2
FEEDGEAR N                                0
(N/M)    M                                       0
DIRECTION SET                           0
VELOCITY PULSE NO.                 0
POSITION PULSE NO.                  0
REF. COUNTER                             0


SERVO MOTOR TUNING

                                            X AXIS

FUNC. BIT                      00011000            ALARM 1     00000000
LOOP GAIN                            3000            ALARM 2     00000000
TUNING ST.                                  0            ALARM 3     10000100
SET PERIOD                                0
INT. GAIN                                  256
PROP. GAIN                          -1683
FILTER                                          0
VELOC. GAIN                           150


                                          Z AXIS

FUNC. BIT                    00011000             ALARM 1     00000000
LOOP GAIN                          3000             ALARM 2     00000000
TUNING ST.                                0             ALARM 3     10000100
SET PERIOD                              0
INT. GAIN                                203
PROP. GAIN                        -1821
FILTER                                        0
VELOC. GAIN                         150


                      C AXIS

FUNC. BIT                     00000000            ALARM 1     00000000
LOOP GAIN                           3000            ALARM 2     00000000
TUNING ST.                                 0            ALARM 3     00000000
SET PERIOD                               0
INT. GAIN                                    0
PROP. GAIN                                0
FILTER                                        0
VELOC. GAIN                         100

Sometimes if you try to execute an MDI command by entering the command, pressing Insert and Cycle Start and the machine just sits there, usually with the Cycle Start light on it may be because the machine builder did not write the Cycle Start into the ladder for the MDI functions. In this case, try entering the command, pressing Input and Output Start.

When the values are in Binary, the eight bits work this way:

128      64       32       16      8      4      2      1
    0        0         0         0      0      0      0      0

The setting unit is 50 milliseconds.

To designate 1000 milliseconds for example,

00010100 which is:
16+4 = 20 x 50 milliseconds = 1000 milliseconds

The largest number possible is:
11111111 which equals 12750.

To display the spindle speed on the CRT, make Parameter
6501.2 = 1.

The 0 controller operators manual (B-61404E/05) has a complete list of alarms including spindle alarms and self diagnostics. It also has Tape Reader operation and Tape Code list.

Fuse list as given in the 0 Control Operators Manual:

POWER SUPPLY

F11, F12      5A        A60L-0001-0194#5.0      200VAC Input Power Supply
F13              3.2A     A60L-0001-0046#3.2      Master PCB, Option PCB
F14              5A        A60L-0001-0046#5.0      Not Used

ADDITIONAL I/O B1

F51             1.6A      A60L-0001-0046#1.6     Protection from external defect on machine side 24vdc line.

INPUT UNIT PCB

F1, F2       10A         A60L-0001-0901#P4100H  200 VAC Input Power Supply
F3               .3A        A60L-0001-0172#dm03    Power On/Off Circuit

To execute Tool Length Measurement for the Z axis:
EOB, Z

When outputting parameters; press EOB and OUTPUT START together to send the 900 (option) parameters. This does not work when inputting parameters but you can use the EOB to allow input of other parameters while in E-Stop condition. If a 0 controller displays alarm 401 and 4n4 (414, 424, etc.) check the LED display on the servo amplifier. If it shows a 9, check the motor leads. Often a motor cable will become damaged causing two or more leads to short together or to ground out. Of course, this will allow an excessive current to flow in the output circuit of the amplifier. On most machines the motor/encoder cables lay in the bottom of the casting sometimes riding in energy chains. It is not uncommon for coolant, oil, etc to collect and eventually making the cable brittle and the back and forth motion causes cracks in the insulation. In this case, the alarms may be intermittent and also a given axis may generate the alarms while a different axis is the one in motion. What follows is the functioning of MCC on an Ecoca turning center with a 0-TC controller using Alpha drives.

MCC (KM101) is energized by L11 (220 vac) through terminals 1 and 3 of connector CX3 of the Power Supply Module and the normally open contact of KA24. KA24 is energized by 24 vdc through the normally closed contact of KA23 and the E-Stop button on the operators panel(SB1). KA23 is the X/Z Axis Spindle Safety Clutch Protection relay. It is held in by the I/O board, address Y52.3.

On a controller with Alpha drives they are connected this way:

The incoming 220 vac is supplied to CX1A pin 1 (220R) and CX1A pin 2 (220S) of the Power Supply Module. This 220 is passed by jumpers from CX1B pin 1 and CX1B pin 2 of the Power Supply Module to CX1A Pins 1 and 2 of the Spindle Amplifier. From this AC source the PSM generates 24vdc which is passed by jumpers from CX2B pins 1 and 2 to the Spindle Amplifier CX2A pins 1 and 2. This 24vdc is passed by jumper from the Spindle Amplifier CX2B pins 1 and 2 to the Servo Amplifier CX2A pins 1 and 2. This 24 volts powers the control components of the Spindle Amplifier and Servo Amplifier which allows them to operate when regardless of MCC. Once the controller is turned on and becomes Ready, MCC is energized. This applies 220 vac to terminals L1, L2 and L3 of the Power Supply Module. From this the AC source, the DC Link voltage is generated. This voltage is passed from the PSM terminals P and N by jumpers to the Spindle Amplifier terminals P and N then by jumpers to the Servo Amplifier terminals P and N. This voltage powers the drive components on both amplifiers. Serial communication is accomplished by connecting JX1B of the PSM to JX1A of the Spindle Amplifier then from JX1B of the Spindle Amplifier to JX1A of the Servo Amplifier. The last drive in this series must have a termination plug on it's JX1B connector.

Alarm 417 indicates that a parameter of the digital servo system is set
incorrectly. The parameters are, of course, dependent on the type of controller.

0 Control                                                                                         16/18 Control

8n20            Motor Format Number                                                 2020
8n22            Motor Rotation Direction                                             2022
8n23            Number of Pulses for Velocity Feedback                    2023
8n24            Number of Pulses for Position Feedback                   2024
269-274      Servo Axis Number                                                     1023
8n84            Flexible Feed Gear Ratio                                            2084
8n85            Flexible Feed Gear Ratio                                           2085

When working with a Fanuc 0 Parameter Manual, it is important to note that the parameters are not 100% sequential, that is, they will be in order up to a point then they will change. So, if you're looking for parameter 124, for example, you won't find it listed after parameter 123. The book jumps from 123 to 130. Parameter 124 shows up 80 pages later following parameter 399. The parameter manual for the 18 controls is laid out sequentially.

The PLC (ladder) of 0 and older controllers cannot be input or output. In the case of a 0 control, it is stored on EPROMS so the chip has to be removed and programmed or replaced. It is very rare for one of these chips to fail but if you are really concerned about that happening your only recourse is to remove the chips from the memory board and make copies. If the memory board fails and you have to replace it, you must remove the chips from the old board to install on the new one.

The CRT is usually a Toshiba. It consists of a chassis, the picture tube Toshiba part number E8069PDA, a board Toshiba part number FW01165F-1. The Toshiba part number for the complete unit is D9MM-11A. The Fanuc part number for this assembly is A61L-0001-0093. The CRT assembly has two cables. One is CN1 which goes to CCX4 of the Graphic Card. The other is CN2 which goes to CP15 of the Power Unit. CN2 is a six pin connector. Pins 1 and 2 are not used. Pins 3 and 4 are -24vdc relative to pin 5 which is the common. Pin 6 is ground.

The memory capacity of an 0-D controller cannot be upgraded. This is due to the way the controller is designed and the system software. The amount of memory and many of the other options are determined at the time the controller is built and cannot be changed. In the case of memory, the memory board cannot be changed to get more memory.

If you walk up to a machine with a 0 controller and command G28 Z0, for example, the machine will normally go to the G54 Z position. If the G54 Z position is 0, the axis will go to it's home position (machine zero). If there is a positive number in G54 Z, the axis will probably over travel in the positive direction. If the value in G54 Z is, for example, -5.0000, the axis will go to a negative five inches from machine zero for the axis.

If a machine with a zero controller which when an offset value is entered, the value is added to the current setting rather than replacing it change parameter 1.4 (IOF) to 0. This is for an M controller. The description is AN OFFSET VALUE INPUT FROM THE MDI PANEL IN THE ABS MODE/INCREMENTAL MODE. The same parameter on a T controller is similar in function. Its name is ORC, when set to zero an offset value is entered as a diameter. When it equals 1 the value is specified as a radius value.

I/O SIGNAL LIST
M-Series and T-Series Combined

*ABSM                           Manual/Absolute signal                                        G127.2
AFL                                Auxiliary Function signal                                      G103.7
AL                                  CNC Alarm signal                                                 F149.0
ALMA, ALMB                 Spindle Alarm signal                                             F281.0, F283.3
AOV128, AOV16           1% Step Override signal                                       G117.6, G116.4
AOV32, AOV64                                                                                           G116.5, G116.6
ARSTA, ARSTB            Alarm Reset signal                                                G230.0, G234.0
B11 to B38                    Second Auxiliary Function signal                           F155.0, F154.3
BAL                               Battery Alarm signal                                               F149.2
BAL1 to BAL6                Absolute Pulse Coder Battery Alarm signal          F159.0 to F159.5
BCLP                             B Axis Clamp signal                                              F188.3
BDT                               Optional Block Skip signal                                    G116.0

Alarm 008 cannot normally be found in the maintenance manual. It means that during programming there was an illegal use of program end. A program was registered without an M02, M30, etc. If you have trouble doing DNC operations with a 0 controller, try setting these parameters to the following settings which are being used for the Max-1Rebel at Redco Machine:

P38      01001010
P51      00000001
P55      00000000
P251    13
P914    00001010
I/O        3

In this case, set the PC for a baud rate of 38400.

If a zero control powers up with a blank screen or scrambled data it may be necessary to perform a memory clear by holding the RESET button and the DELETE button while powering up the controller. Before resorting to this, first try replacing the GRAPHIC card, if possible. You can also try disconnecting all cables from the boards except for the cable between the GRAPHIC card and the CRT. Another possible cause for this condition is either a bad master board, a bad memory board or both. I have seen cases where both boards are bad at the same time. The Master board of an 0-MC controller has six LEDs which indicate various control states. These LEDs are very useful in troubleshooting those alarms that are not displayed on the CRT. They are as follows:

L1     L2     L3

L4     L5     L6


NUMBER   COLOR     DESCRIPTION

L1               GREEN     DOES NOT INDICATE ALARM, BLINKS DURING AUTOMATIC OPERATION
                                      TURNS OFF WHEN ALARMS ARE PRESENT.


L2               RED          ON DURING ALARM STATE. NORMALLY INDICATES AN ALARM WHICH IS
                                     EXTERNAL TO THE MASTER BOARD, MEMORY BOARD, ETC. CHECK THE
                                     CRT FOR ALARMS SUCH AS NOT READY, OVERTRAVEL, ETC.



L3               RED          NO MEMORY CARD IS INSTALLED.



L4               RED          A WATCHDOG TIMER ALARM HAS OCCURRED. THE MASTER BOARD OR
                                     MEMORY BOARD MAY BE DEFECTIVE. SEE ALARM 920.
?
or

A SERVO ALARM HAS OCCURRED.

or

NO AXIS CARD HAS BEEN INSTALLED OR THE AXIS CARD IS DEFECTIVE.


L5               RED         A WATCHDOG TIMER ALARM HAS OCCURRED IN THE SUB-CPU.
                                    REPLACE THE SUB-CPU PCB or

A SERVO ALARM HAS OCCURRED FOR THE FIFTH OR SIXTH AXIS.


L6                RED        A SYSTEM ALARM HAS OCCURRED. THE ANALOG INTERFACE CARD IS
                                    DEFECTIVE.

or

THE DNC1 CARD IS DEFECTIVE.

or

THE SEVENTH OR EIGHTH AXIS CARD IS DEFECTIVE.

These six LEDs are in a single row from top to bottom on the following master
boards:

A20B-1002-0360
A20B-1003-0760
A20B-2000-0480
A20B-1003-0750
A20B-2000-0180
A20B-2001-0060
A20B-2001-0065

i.e.

L1
L2
L3
L4
L5
L6


The LEDs are located in three columns of two on the following master boards:

A20B-2000-0170
A20B-2000-0175
A20B-2001-0120
A20B-2002-0650

i.e.

L1   L2   L3

L4   L5   L6

9000 series programs such as ATC Macros are protected by parameter 10.4, if set for one, programs can not be viewed or edited.

Servo Tuning screen using the X axis as example:

FUN. BIT =                       Parameter 8103
LOOP GAIN =                  Parameter 517 or 512
TUNING SET =                Used by automatic servo tuning function
SET PERIOD =                Used by automatic servo tuning function
INT. GAIN =                      Parameter 8143
PROP. GAIN =                  Parameter 8144
FILTER =                          Parameter 8167
VELOC. GAIN =               Parameter 8121 + 256 divided by 256 times 100
ALARM 1 =                       Diagnostic 720
ALARM 2 =                       Diagnostic 730
ALARM 3 =                       Diagnostic 760
ALARM 4 =                       Diagnostic 770
LOOP GAIN =                  Actual Loop Gain
POSITION ERROR =       Actual position error (Diagnostic 300)
CURRENT % =                Percent of rated value
SPEED RPM =                 Actual motor RPM

The eight bits of each alarm (1-4) correspond directly with the diagnostics to which they are associated. In the event of a servo alarm you can check the details of the alarm on the Servo Tuning page just as you would with the diagnostic. Alarm 1 is used to check the details of alarm 400 and 414 just as Diagnostic 720 is. Alarm 2 is for disconnection alarms and overload alarms. Alarm 3 and 4 are for checking the details of alarm 319.

If the Servo Tuning screen is not displayed by pressing the DGNOS PARAM button, the right CHAPTER key, SV PARA soft key the SV TUN soft key, check parameter 389.0 (SVS), it must be 0 for the screen to be displayed.

If none of the axes of a machine will move, check the diagnostic for the STLK signal. This signal, when set to 1, will prevent all axis movement. In the case of a 0 controller STLK is Diagnostic 120.1.

The M-Code which increments the parts counter is D40.3.If it is set to 1, the parts count will be incremented by M02 and/or M30. If it is set to 0, the M-Code can be specified. The allowable range is between M0-M255 but it can not be M98 or M99. The desired M-Code is specified in parameter 219. Parameter 600 stores the Parts Required while parameter 779 stores the Parts Preset.

On a 0 controller with Alpha drives, parameters 6560 - 6563 are used to adjust spindle gain for different gear ranges. They are especially useful for getting the spindle to be more rigid during orientation. On most machines only one or two of them are normally used and the standard setting is 1000.

On a 0T controller the value stored in the soft limit parameters (i.e. 705 for Z-) is equal to roughly 39 millionths (.000039).

0 Control with standard memory has a memory capacity of 32767 characters or 63 programs whichever comes first. Each instruction equals one character or block of memory. (i.e. M, G, 0, Z, etc.) When programming you can save memory by leaving out unnecessary things especially zeros. Instead of inserting M06 in a program it should be M6. Instead of Z-5.0 it should be Z-5. With a Parameter change you can even omit the decimal point when inputting units.

To search for a particular element in a program:
1. Go to EDIT mode.
2. Type in what you are searching for.
3. Press the Cursor UP button if what you are looking for is above your current position in the program. Cursor 
    DOWN button if what you are  looking for is below your current position in the program. The memory Board
    has four sockets for 256k memory chips.



0-C Control Spindle Amplifier Alarms as displayed on Amp:

A0, A1   The control program is not running. Check for ROM not properly
                installed or incorrect ROM. Possible defective PCB.

AL-01   The internal motor temperature is higher than the rating. 
              Check for the motor being overloaded, the cooling fan defective, poor
              motor ventilation due to dirt or obstruction, motor overheat wires open,
              invalid detector parameters, motor or thermostat defective.

AL-02   The actual motor speed deviates grossly from commanded speed.
              Check the load meter to see if the load is too heavy, poor power connections,
              incorrect accel/decel duration parameter setting, incorrect speed detector parameter
              setting, IGBT module/IPM defective, speed feedback signal (cable).

AL-03   The fuse at the DC Link is blown.
              Check the IGBT module/IPM.
              This alarm will occur if an over current flows in this circuit.


AL-04   Input fuse blown. Input power open phase.
             Detects missing fuse or momentary loss of power.
             Check for open phase and power supply regenerative unit.

AL-05   Control power supply fuse blown.
              Detects that control power supply fuse AF2 or AF3 is blown.
              Check for control power supply short circuit.

AL-07   The actual motor speed exceeded 115% of the maximum allowable speed
              setting (standard speed setting).
              Check for incorrect speed detector parameter setting. 6511 Bit 0, 1 and 2. For 15 Control
              it is Parameter 3011 Bit 0, 1 and 2.  For 16/18 its 4011 Bit 0, 1 and2.

AL-08   High input voltage. Detects that switch is set for 200 VAC when incoming voltage is 230.

AL-09   The temperature of the main circuit heat sink has risen abnormally. Check for fan and/or
              ventilation problem.

AL-10   Low input voltage. Detects drop in input power.

AL-11   Over voltage in DC Link. Detects abnormally high DC power supply voltage.

AL-12   Excessive current flowed in the DC Link, the main circuit power module (IPM) detected an error.
             Check for a short circuit in the output circuit of the amplifier. The IGBT, IPM or the PCB may be
             defective. Check the model-specific parameter settings.

AL-13   The memory inside the CPU is abnormal.
              This check is made when the power is switched on. The PCB is probably defective.

AL-15   A sequence of switching operations was incorrect during speed range switching control
             or spindle switching control. Check the contactor used for power line switching and in
             particular the auxilary contact.

AL-16   The RAM is abnormal. This check is made when power is switched on.
              Probably a defective PCB.

AL-19   The offset voltage for the U phase current detection circuit is too high. Check the connection
              of the power to the PCB, the current detection circuit may be defective, the A/D converter may
              be defective. In either case the PCB must be replaced.

AL-20   Same as for AL-19 but V phase.

AL-24   The serial communication data between the CNC and Spindle Amplifier is abnormal.
              Check that the NC power is on, check the serial cable, the LSI chip may be defective or the
              PCB with the LSI on it, the I/O Link adapter may be defective. This alarm is normal when the
              NC power is off.

AL-25   Serial communication between the CNC and Spindle Amplifier stopped. Check same as above.

AL-26   The C's contouring control speed detection signal (detector on the motor side) is abnormal.
             Check the feedback signal level with an oscilloscope, check the connections of the cable, check
             the cable shield for proper grounding, the detection circuit may be defective, the parameter
             setting for the C's contouring control detector. It is 6511 Bit 5. For 15 control it is 3011 Bit 5 and
             for 16/18 control it is 4011 Bit 5.

AL-27   Position Coder signal error. The position coder or it's cable may be defective, signal may be
              too low (adjust level), feedback cable may not be shielded properly, the detection circuit may be
              defective. The C's contouring parameter setting may be incorrectly. It is 6501.2 For 15 control it
              is 3001.2 For 16/18 it is 4001.2

AL-28   The C's contouring control speed detection signal (detector on the spindle side) is abnormal.
              Check the same as for AL-27.

AL-29   Excessive load (at least 90% of the maximum output as set initially by a parameter) was applied
              continuously for a certain period. Normally 30 seconds set by parameter. Motor is overloaded,
              check the load meter, cutting conditions and tool.


AL-30   Input Circuit Over current. Over current flowing in input circuit. Check incoming power for over
             voltage condition. Possibly bad Power Supply.


AL-31   The motor cannot rotate at the specified speed. It rotates at a very low speed or stops. Check if the
              motor is physically locked, check if the speed feedback cable is defective, check the speed
              feedback signal with an oscilloscope, check the power connections.

AL-32   The memory in the serial communication LSI chip is abnormal. The LSI chip is probably defective,
              replace the PCB.


AL-33   Insufficient DC Link section charging. Detects insufficient charging of DC power supply voltage in
              power circuit section when magnetic contactor in amplifier is turned on. Check for open phase or
              defective charging resistor.

AL-34   A Parameter setting is invalid, check parameters.

AL-35   The value set in the gear ratio data parameter is greater than the limit allowed in the internal processing.
              Incorrect gear ratio parameter setting, check if the specified gear ratio is too high. Spindle to Motor Gear
              Ratio Parameter 6556 to 6559. For 15 controller it is 3056 to 3059. For 16/18 control it is 4056 to 4059.

AL-36   The error counter overflowed. Check if the values set in the gear ratio and position gain parameters
              are too large. Check parameters above as well as 6560 to 6563 (Position gain during orientation),
              6565 to 6568 (Position gain during servo mode/synchronization control of the spindle), 6569 to 6572
              (Position gain during C's contouring control).

              For 15 controller:

              3060 to 3063
              3065 to 3068
              3069 to 3072

              For 16/18 controller:

              4060 to 4063
              4065 to 4068
              4069 to 4072

AL-37   When an emergency signal was entered, the motor did not decelerate, rather it accelerated or the
              motor was kept excited even after the accel/decel duration time (normally 10 seconds as set by
              parameter). Check that the speed detector parameter, 6511.0,1 and 2, is set for the speed detector
              used. 3011.0,1 and 2 for 15. 4011.0,1 and 2 for 16/18. Check that the Accel/Decel duration parameter,
              6582, is set correctly. 3082 for 15. 4082 for 16/18.

AL-39   The C's contouring control one rotation signal has not been detected correctly. Check that the feedback
              signal level is sufficient and that the shield is properly grounded. Check that the parameter used
              to specify the use of the C contouring control detector, 6503.4,6 and 7 is set properly. 3003.4,6 and 7
              for 15. 4003.4,6 and 7 for 16/18.
              PCB may be defective.

AL-40  The C's contouring control one rotation signal is not generated.
             Check the cable and signal as above.
             Check the offset of the C's contouring control one rotation signal with an oscilloscope and adjust as
             necessary. PCB may be defective.

AL-41   The position coder one rotation signal was not detected correctly.
      &
บจก.สยามเอวีเอส
63 Moo 2 แพรกษาใหม่ เมือง สมุทรปราการ
นำเข้า-จำหน่าย เครื่องจักร cnc มือสองญี่ปุ่น
ติดต่อ คุณ ธนเดช  084-387-2401
EMAIL kiattub@gmail.com
คลิกลิ้งแอดไลน์ได้เลย Line id : boysiamavs
http://line.me/ti/p/~boysiamavs